

V
P The Quarter Horse: A Case Study In Rapid

Prototyping of a S2-hit Microprocessor Chip

S. Ho, B. Jinks, T. Knight, J. Schaad,
L. Snyder, A. Tyagi, C. Yang

D~epartment. of Computer Science ____________

Seattle, Washington 98195 Aeession For
Technical Report 85-07.04 NTIS GRA&I

July, 1985Uanoce o
Just if icati a

Di sti b i on/

Avi~or

Dist SIcaS~eiH
ABSTRACT
The Quarter Horse is a single chip 32-bit microprocessor whose design and im-
plementation in custom CMOS was completed in 90 days. The design effort is
presented as a case study in managing choice complexity. The factors contribut-
ing to the rapid development of a prototype are discussed, as is the processor' s

architecture.

LS.4

%*V

Funded in part by the Defense Advanced Research Projects Agency under Contract MDA9O3-5-K-0072,

ad in part by the University of Washington / Northwest VLSI Consortium. This paper appeared in the

1985 International Conference on Computer Design.
-S%40 ~

1%
I ~ - S

Our minds are finite, and yet even in
these circumstancea of finitude we are sur-
rounded by possibilities that are infinite.
- Alfred North Whitehead

We must never make experiments to con-
firm our ideas, but simply to control them.
- Claude Bernard

1 Introduction

The difficulties of implementing large VLSI designs derive from two quite differ-
ent sources which can be named: mass complexity and choice complexity. Mass
complexity refers to the difficulty of specifying the detail in a large VLSI design
when it is known what is to be done; this type of complexity is primarily a con-
sequence of the sheer quantity of information. (Examples will be given shortly.)
Choice complexity refers to the difficulty of selecting among alternatives within the
design space to determine how it is to be done; this type of complexity is due to
the complicated interactions of the components and the interdependence of design
decisions. To complete a design is to triumph over mass complexity; to complete a
successful design is to triumph over both types of complexity. 1

There are two purposes in distinguishing between mass and choice complexity.
First, the distinction helps to clarify what design problems can and can not be
solved by CAD tools and VLSI design methodologies. For example, the hierarchical
design methodology is directed purely at managing mass complexity: The hundreds
of thousands of polygons that make up a layout are organized into a few composite
cells and leaf cells. Design rule and other checking facilities also aid in handling
mass complexity since most designers can produce correct primitive cells but in-
troduce design rule errors in cell composition or design revision. Simulation tools, -
on the otherhand, help confront choice complexity by giving designers the ability
to evaluate design alternatives in software rather than hardware. Methodologies
such as NORA (No Race logic [1]) constrain the design and simplify dynamic be-
havior, thereby reducing choice complexity. Other tools and methodologies can be
similarly classified and it is interesting to assess how they carve away at the overall
complexity problem.

The second reason to separate mass from choice complexity is to study ways of
handling choice complexity, the more difficult and less well understood of the two.

The problem is that simulators, the principal computer aid for coping with choice

2

6h .'

-" ..-.- 4 .- . g . .- - o -.- .- - .- - . .- - . .- .o . .- - • . j -. ,-.- .. - .- .- .- - " .- " ; " , d - " %
' "*

complexity, quickly become inadequate. The computational load of simulation be-
comes too large to be feasible; the simple, approximate models that work well on
small designs fail to be accurate when scaled up; the space of possibilities becomes
too large to be explored fully as the number of interacting and interdependent parts
increases. The difficulties of choice complexity increase nonlinearly with the size of
the design, causing it to be the more significant limitation.

Clearly, the easiest way to handle choice complexity is through experience, since
making design decisions is largely a matter of "knowing from experience" the con-
sequences of choosing various alternatives. But it is not possible to start a design
and make every decision correctly from experience because were it so, every decision
would have been previously made and the design would be essentially a copy of a
previous effort - no design would be required. So, design decisions must be made
when there is no direct experience to guide the designer. He must therefore find

wyofacquiring the relevant experience. This paper focuses on the acquisition
and application of experience - the management of choice complexity.

The Quarter Horse, a 32-bit microprocessor chip, designed start-to-finish in 90
days, will serve as a case study for discussing choice complexity management. The
rapid 90-day design time is itself a means of quickly acquiring experience, but
there are many other more fundamental instances within the design where choice
complexity was reduced by bringing our experience or other people's experience to
bear on the problem. Most, but not all, of these strategies are applicable to other
large VLSI designs.

The organization of the paper is to give an architectural description of the Quar-
ter Horse chip together with an inline discussion of choice complexity. In the Sum-
mary section, we will extract some general principles that can be applied to other
designs.

2 The Quarter Horse Architecture

In this section we present the Quarter Horse architecture. Concurrently, we identify
instances of choice complexity and describe ways that it may be reduced.

2.1 Project Objectives

Perhaps the most significant way in which choice complexity was controlled in the
Quarter Horse chip was by selecting an achievable, intermediate goal. Rather
than building a high performance microprocessor as our first objective, we chose
a straightforward, unadorned machine which was intended to be redesigned. This
approach, which exploits the tendency of second implementations to be cleaner,
more efficient, more stable, etc., provided many opportunities for simplification.

3
_ __ __ __ _ -1,r

! L.-

First, decisions did not have to be right the first time, since they could be
changed later. We could forge ahead on the likelihood, rather than the certainty,
that a decision was correct and thus save exploration time. Second, by ignoring in
the first design the features that would improve the performance of the processor
(pipelining, caching, or whatever), we saved work in the short run, thus enabling the
chip to be completed sooner, and giving us quicker feedback on our decisions. Third,
solutions to certain problems could be delayed until the information needed to solve
them was available. Global floor planning is such a problem. Until they are stable
and the inter-relationships are fixed, there is no point in packing the components

together tightly. We placed the components with generous space separating them
in order to provide for last minute changes in size; see Figure 1. To do this within
the confines of our die size we used the real estate that would have been assigned
to the unimplemented performance features.

Therefore, the intermediate goal of the Quarter Horse effort was to build a basic
32-bit microprocessor that could be enhanced to be a high performance machine in a
follow-on design. Since it was impossible to predict how the follow-on design would
affect the Quarter Horse, the processor could be self contained if it had flexibility
and simplicity. We were designing for experience, but if parts of the design were
good enough to keep in later designs, that would be an added benefit.

2.2 The Architecture

There is a long (by the standards of the IC world) tradition of single chip micro-
processors, so one way to reduce choice complexity is to learn from other project's
successes and failures. The resulting architecture (see Figure 2) benefitted greatly
from this experience. (Explicit credit is given below.)

The processor is built around two 32-bit wide data path busses with a control
PLA and a one-instruction prefetch unit. The data path is connected at one end t-
a 32-bit address port and at the other end to a 32-bit data port.

It is interesting to note that although we advocate aggressive exploration of the
design space using every means possible, there are a few choices that just cannot
be made easily. These decisions tend to be global and one example is the use
of the chip's pins: There is the address port/data port (ap/dp) choice versus the
instruction port/value port (ip/vp) choice. In the ap/dp choice, all addresses go
through the same pins while the data port must be shared between instructions and
values. In the ip/vp choice the pins must be shared between addresses and data.
The consequences of the decision affect the internals of the chip significantly and
the interface of the microprocessor with the memory system. Although the ip/vp
choice was never selected in the microprocessors we studied, our evaluation was ..

.- - . .. -

-. .-. . A....%2 ;r... -s---

I...

that both schemes had assets and liabilities. Our final decision was to choose ap/dp
more or less arbitrarily; perhaps it would be worth another 90 days to explore fully
the ip/vp choice.

The Quarter Horse has a limited number of instructions like the RISC architec-
ture [2] although we allocated a full 32 bits for the instruction format as was used in
the PP4 [3] in order to have flexibility for later expansion. The instruction format
is:

I .

< .------------------------ 32 ------------------------------ >

lop code ISCC IHMN D I S1 I S2 I Imediate
15 5

.......------------- 12-----------

where the abbreviations are:
SCC Set condition code
IMM Immediate data flag
D Result destination register
S1 Source data register 1
S2 Source data register 2

When immediate values are used S2 is not available.

The architecture uses the register-to-register approach as was used in RISC.
Unlike RISC, however, instructions employ a variable number of microcycles which
are specified by the controlling PLA. (The purpose and benefits of this choice are
explained below.) As a result, instructions can be implemented whose complexity
is too great to be completed in a rigid, fixed length fetch/execute cycle. We chose
to illustrate this property with instructions using character type data.

The Quarter Horse employs word addressing, as was used in MIPS [4]. Further-
more, we limited the memory space to 226 words, which is quite adequate for our
experimental purposes and enables interrupt addresses to be stored in 28 bits. This
modest limitation and the fact that the four flag bits fit in the unused positions
permit a one word program status word.

2.3 Architectural Components

We briefly discuss each of the components of the architecture with a concurrent
discussion on ways of reducing choice complexity.

5

,% % ~..............., . ,,,..... ;.......... . .,. ,.21 , ',./ ,* ,,A e .-/., _. . --. ... * :.._ ''... . -'- S. _ :.A _.'. . _',.-,':-t-. N"" ' '" - '

2.3.1 Register Array

The register array has two distinct parts, both of which are built from a basic dual- .

port static RAM cell: a 32 x 32 general purpose register set and working register set
of two temporary registers and a constant (255) register. The temporary registers
and constant are used chiefly for the character operations. The 32 general purpose
registers provide considerable flexibility for the software designers.

Design of RAM cells has been a particularly knotty problem for other micro-
processor projects. Although the Quarter Horse RAM cell was specially designed,
it was based on a dual-ported cell that was produced from a VLSI circuit design
generator developed at the University of Washington'. This experience illustrates
two ways in which choice complexity can be reduced.

First, the structures like register arrays should be automatically produced using.*"
VLSI design generators just as PLAs are automatically generated now. The gener-
ator program is an encoding of the 'experience' of the generator writer packaged
in an extremely usable form. But not every architectural structure can be antici-
pated, so there may not be a design generator to solve a particular problem. Thus
the second, and perhaps the most time-honored means of utilizing other designer's
experience, is to modify an existing design. When the existing design is "close' to
what is needed this is an extremely effective technique to reduced choice complex-
ity. But when it ;a not "close" the existing design can possibly be a distraction
preventing exploration of rich areas of the design space.

2.3.2 Arithmetic-Logic Unit

The ALU of the Quarter Horse is similar to that of the OM2 data path chip designed
at CalTech (51. The chief differences are that it was implemented in CMOS and like
the Mosaic design [6], the "R function block" was replaced with an XOR gate.

The way in which choice complexity was controlled in the ALU was by utilizing
the best features of designs produced by eight different designers. Students had
been asked as a homework assignment in an introductory VLSI class to produce a
CMOS version of the OM2 ALU. Eight completed designs were compared and the
best parts from these were assembled into the Quarter Horse ALU.

Because the ALU could be produced quickly, it was possible to fix almost at

'The University of Washington/Northwest VLSI Consortium is presently engaged in a project to study and '_

build design generators - fexible programs that produce circuits for standard architectural components.
The RAM design generator was not mature enough to be used for the Quarter Horse directly. The only
generators used were the pad frame generator and the PLA generator.

6

the beginning our 82p data path pitch. This enabled subsequent design activities
to progress with confidence that at least one characteristic of the design would not
change.

2.3.3 Shifter

The barrel shifter, deemed to be a necessity because of our interest in data types re-
quiring field extraction, was designed by beginning with published approaches [7,81.
The first design was generalized on a second pass to incorporate rotation. The use
of a second layer metal CMOS process permitted a significant speed improvement
due to reduced capacitance.

2.3.4 Instruction Register, PC and Memory Registers

The instruction register is a pair of registers to support instruction prefetch. These,
plus the program counter, memory address and data registers, bus drivers, imme-
diate and sign extension logic were all designed from scratch.

There is little that can be said about the management of choice complexity here
except that we tried when possible to use library cells like flip-flops. In the end the
designs were mostly original thinking. ... '

2.4 The Control PLA

Having been impressed by the flexibility provided by the single control PLA of the
Mosaic design [6] and a related scheme of the PP4 [3], we decided to adopt it rather
than embrace the control precepts of other microprocessor chips. The use of the
PLA would simplify the addition of new instructions at a later date and it would
be the easiest way to control complex instructions requiring many microcycles. At
the same time we knew that its performance would be the limiting factor in the
speed of the microprocessor. This tradeoff between the costs of performance and
the benefits of flexibility were a continual subject of discussion and experimentation.
Although we have already realized many of the flexibility benefits, we have not yet
determined what the total cost will be. But let us explain.

In terms of choice complexity, what is crucial about the use of the PLA as
the single central controlling device of an architecture is that it delays the binding t
time of critical architectural decisions. A principle of computing is to delay binding
decisions for as long as possible simply to retain flexibility, and because a PLA
is programmable - a complete revision can be produced in an hour - changes

7.....................- -..
.

• . ° . .. • . °. . . - ° . . - - . . - - ~ -. -. - - ' . • * . . '° . °.' .. : ° • : o % , .' • " " . . -° . . o- ° . % -. : " % •

-r -c -- '- -- ~ • - -

can be made trivially right up to the end. The importance of the delayed bind-
ing principle for microprocessor architecture design was dramatically illustrated to
us when three days before completion of the chip we had to change the general
register read protocol! Moreover, as the simulations provided us with information
about the performance of the architecture's components, we could continually reviie
the microcontrol. The conclusion has to be that the architect-re itself can aid in
controlling choice complexity. But at what cost?

The performance of the PLA concerned us from the very start and we simulated
"typical" PLAs to get estimates of performance before adopting the architectural
strategy. (The actual, as opposed to the psychological, effect on our work was mini-
mal since we were going to redesign anyhow and the PLA could then be implemented
in faster, random logic if it turned out to be too slow.) We took an aggressive 50ns
cycle time as a goal and spent a lot of effort trying to achieve it. We experimented
with a variety of design styles, domino, NORA, pseudo nMOS, etc., in order to find
high performance solutions. We also enumerated a variety of ways in which a slow
PLA could be made faster, but none was actually implemented. Most of this activ-
ity was to build confidence that the PLA-on-the-critical-path decision was correct.
The Quarter Horse chip that was fabricated did not (by simulation evidence) meet
the 50ns PLA requirements but by then the flexibility benefits alone justified the
decision and slow performance was of less concern. (Measurements on the actual
chip were not available at publication time, the simulated time for the PLA was
7-ns-8Ons.)

There was one other way in which the control PLA reduced choice complexity:
By using the PLA for all timing, there was no interdependence among the archi-
tectural components on clock characteristics, which promoted more independence
among the parts. If a single global clock had been used for each component, then
there would have had to have been agreement among the designers on such things
as the duration of each phase, even with a PLA control. With the PLA doing all of
the timing, short duration activities like precharging can be done in one step while
ALU computation can be given several cycles, i.e. the "logical clock" used by the
component can be asserted for several "physical clock" periods. The lesson is to
keep the clock out of the component designs.

2.5 Tools

The Quarter Horse chip was designed using Release 2.1 of the University of Wash-
ington/Northwest VLSI Consortium Design Tools [9]. Our chief tool for handling
choice complexity was the RNL simulator of Chris Terman [10] which was applied to
all component designs and to the entire chip. This tool, revised for CMOS and rea-
sonably well calibrated to the MOSIS [111 processes, was an effective way to explore

. . .

7;. a a 7-'..7
*

the design space quickly. For certain cells, e.g. RAM, we used SPICE simulation.

While designing the architecture, we built an interactive simulator to allow 'reg-
ister transfer level" simulation of the Quarter Horse. This program, which ulti-
mately produced the microcode for the PLA, was an operational "document" that
continually reflected the current state of the high level design decisions. Such toolsI
enable one to try many architectural alternatives and they are worthy of greater
exploitation in the future.

2.6 The Final Chip

The goal of designing a 32-bit microprocessor was adopted on January 14, 1985 and
the Quarter Horse was queued for fabrication on April 15, 1985. It is composed
of approximately 25,000 transistors and used the two layer metal 3 U p-well bulk
CMOS process provided by MOSIS 1111. (The chip fabrication was not complete at
publication time.) A complete description of the architecture can be found in The
Architecture of the Quarter Horse Microprocessor [121.

3 Summary

Multiproject chips have made possible a reduction in the time required to fabricate
a prototype chip to 1-3 months. The time required to design a prototype should be
similarly brief. The Quarter Horse effort demonstrates that attention paid to choice
complexity management permits substantial prototypes to be designed rapidly.

Although the Quarter Horse is not the last word, and there is much still to be
studied about choice complexity management, it is useful to recapitulate the points
cited above. First,

9 try a throw-away design as an intermediate goal.

It is an effective way to acquire experience and streamline the effort. Second,

* read the literature and avoid needless reinvention.

No matter how inventive or creative a project is, it contains aspects that have been
done before. Third, when possible

* use design generators

to avoid designing entirely, but if that is impossible, find something close and rework
it. ' --

* Revise existing designs,

0 -4

and if several designers can be assigned to a critical part to do independent solutions,

- merge the best of separate design efforts.

The sixth rule may not always be applicable, but it was so important to the Quarter
fl Horse, it is worth seeking cases to apply it:

* Employ a flexible architecture that delays binding

and plan to implement it with a generator tool such as a PLA. Finally,

* build tools to aid exploration

is a rule that will take the form of various simulators such as our architectural
simulator.

A CKNO WLEDGMENTS: 7

We are indebted to the staff of the UW/NW VLSI Consortium for their help
throughout the design: Without their direct technical and moral support, the Quar-
ter Horse would not have made it to the finish line.

10F

L 10

References:

1. Nelson F. Goncalves and Hugo J. DeMan, Nora: A Racefree Dynamic CMOS
Technique for Pipelined Logic Structures, IEEE Journal of Solid-State Circuits,
SC-18(3): 261-266, (June, 1983).

2. Manaolis G. H. Katevenis, Reduced Instruction Set Computer Architectures for
VLSI, Ph. D. Thesis, Univ. of California at Berkeley, October 1983.

3. W. D. Moeller and G. Sandweg, The Peripheral Processor PP4: A Highly Reg-
ular VLSI Processor, Proceedings of 11th International Symposium on Com-
puter Architecture, pp. 312-318 (June 1984).

4. J. Hennessey, N. Jouppi, S. Przybylski, C. Rowen and T. Gross, Design of
a High Performance VLSI Processor, Proceedings of 3rd CalTech Conference
on VLSI, California Institute of Technology, Pasadena, California, pp. 33-54,
March 1983.

5. Carver Mead and Lynn Conway, Introduction to VLSI ;vstems, Addison-
Wesley, 1980, Chapter 5.

6. Christopher Lutz, Design of The Mosaic Processor, Masters Thesis, California
Institute of Technology, May, 1984.

7. Robert W. Sherburne Jr., Manolis G. H. Katevenis, David A. Patterson, and

Carlo H. S~quin, Datapath Design For RISC, Proc. of 1982 Conf. on Advanced
Research in VLSI, MIT pp. 53-62.

8. John A. Bayliss, Stephen R. Colley, Roy H. Kravitz, Gary A. McCormic,
William R. Richardson, Doran K. Wilde, Leon L. Wittmer, The Instruction
Decoding Unit for the VLSI 432 General Data Processor, IEEE Journal of
Solid-State Circuits, Vol. SC-16(5): pp. 531-536, (October 1984).

9. UW/NW VLSI Consortium, Design Tools Release 2.1, University of Washing-
ton, 1984.

10. Christopher J. Terman, User's Guide to NET, PRESIM, and RNL/NL, Tech-
nical Report, Massachusetts Institute of Technology, (September 1982).

11. Danny Cohen and George Lewicki, MOSIS - The ARPA Silicon Broker, Pro-
ceedings of the CalTech Conference on VLSI, California Institute of Technol-
ogy, Jan. 1981.

12. S. Ho, B. Jinks, T. Knight, J. Schaad, L. Snyder, A. Tyagi, and C. Yang, The
Architecture of the Quarter Horse Microprocessor, Technical Report, Univer-
sity of Washington, 1985.

-11

. ,.:.._;'- , :_ •..,..,..,.................-..,-_ ... ,,. , ,,.. , ,. ,

CI1Nl3 C) i9~

1000

LLJL%

LU.

V)CJ

F--
C.D)

uJJI

F- <~V

LL9 % .. I

13 V

